简介
Tinyram是一个简单的RISC随机存取机器,具有字节寻址的random-accessmemory和inputtapes。TinyRAM有两个变体:一个遵循哈佛架构,一个遵循冯诺依曼架构(本文我们主要讨论冯诺依曼架构)。
简明计算完整性和隐私研究项目构建了证明TinyRAM程序正确执行的机制,而TinyRAM的设计是为了在这种情况下提高效率。它在“拥有足够表达能力”和“足够简约”这两个对立面之间取得平衡:
?当从高级编程语言编译时,有足够的表达能力来支持简短高效的汇编代码。
?小指令集,指令通过运算电路简单验证,利用SCIPR的算法和密码机制实现高效验证。
本文对于tinyram不再进行重复介绍,会对上一篇文章进行补充,然后重点是指令介绍和电路约束介绍。tinyram基础介绍可以参考我们团队上一篇文章:深入理解TinyRam
Tinyram指令集
Tinyram总共有29个指令,每条指令都由一个操作码和最多三个操作数组成。一个操作数可以是一个寄存器的名称。除非特别说明,否则指令不会单独修改flag。每条指令默认将pc增加i(i%2^W),对于vnTinyram来说i=2W/8。
一般来说,第一个操作数是指令计算的目标寄存器,其他的操作数指定指令需要的参数,最后,所有指令都需要机器的一个周期来执行。
位操作
整数操作
这些是各种无符号和有符号的整数操作。在每种情况下,如果发生算术溢出或错误,flag被设置为1,否则被设置为0。
shift操作
??shl?指令?shlrirjA?将左移位ubit得到的W位string存储在ri寄存器中。移位后的空白位置被填充为0。此外flag被设置为的最高有效位。
??shr?指令?shrrirjA?将右移位ubit得到的W位string存储在ri寄存器中。移位后的空白位置被填充为0。此外flag被设置为的最低有效位。
比较操作
比较操作中的指令每一个都不会修改任何寄存器;比较的结果存储在flag中。
区块链技术公司BTCS澄清其非托管质押操作:金色财经报道,专注于区块链技术的BTCS公司(纳斯达克:BTCS)就美国证券交易委员会(SEC)最近对Coinbase采取的有关其押注业务的行动发表了看法,并澄清了BTCS的非押注模式与SEC所质疑的做法之间的差异。[2023/6/10 21:28:47]
move操作
??mov?指令?movriA?将存储到ri寄存器中。
??cmov?指令?cmovriA?如果flag=1,将存储到ri寄存器中。否则ri寄存器的值不会改变。
Jump操作
这些jump和条件jump指令都不会修改寄存器和?flag?但是会修改?pc。
??jmp?指令?jmpA?将存储到pc中。
??cjmp?指令?cjmpA?在?flag?=1的条件下将存储到pc中,否则pc自增1。
??cnjmp?指令?cnjmpA?在?flag?=0的条件下将存储到pc中,否则pc自增1。
Memory操作
这些是简单的memoryload和store操作,其中memory的地址由立即数或寄存器的内容确定。这些是tinyram中唯一的寻址方式。。
输入操作
该指令是唯一一个访问两个tapes中的任意一个的指令。第0个tape用于primary输入,第1个tape用户auxiliary输入。
输出操作
该指令表示程序已经完成了计算,因此不能再允许其他操作。
指令集约束
Tinyram采用R1CS约束形式进行电路约束,具体形式如下:
一个R1CS约束,可以有a,b,c三个linear_combination表示,一个R1CS系统中的所有变量的赋值,可以分为两个部分:primaryinput和auxilaryinput。Primary就是我们经常说的“statement”。auxiliary就是“witness”。
zkLend将与Ducks Everywhere、briq合作发行ZENDucks NFT:金色财经报道,Layer 2 货币市场协议zkLend宣布与Starknet网络上的Ducks Everywhere、briq合作发行ZENDucks NFT,ZENDuck可以用于解锁对 zkLend Discord 上 ZENDucks 频道的独家访问权限。此次合作还将为用户提供机会,让他们在 Starknet 生态系统中主动使用各种 dapp(使用钱包、展示您的 NFT、构建和打破 briq 集、浏览 NFT 市场等)。[2023/2/24 12:27:55]
一个R1CS约束系统包含多个R1CS约束。每个约束的向量长度是固定的。
Tinyram在libsnark的代码实现中大量使用了一些定制gadgtes来表述vm的约束以及opcode执行和memory的约束。具体代码在gadgetslib1/gadgets/cpu_checkers/tinyram文件夹下。
位操作约束
??and?约束公式:
and的R1CS约束将参数1和参数2以及计算结果逐bit位进行乘法计算验证,约束步骤如下:
1.计算过程约束,代码如下:
2.结果编码约束
3.计算结果非全0约束
4.flag约束
??or?约束公式:
具体约束步骤如下:
马斯克:订阅了推特Blue的用户所看到的广告数量将减半:金色财经报道,特斯拉CEO马斯克表示,推特Blue的订阅费用为每个月8美元;订阅费用已经根据不同国家的购买力进行了调整;推特Blue的服务将包含回复、提及、搜索功能的优先使用,还将包括发布长视频、音频的功能;订阅了该服务的用户所看到的广告数量将减半。[2022/11/2 12:06:53]
1.计算过程约束,代码如下:
2.结果编码约束
3.计算结果非全0约束
4.flag约束
??xor?约束公式:
具体约束步骤如下:
1.计算过程约束,代码如下:
步骤2,3,4同上
?not?约束公式:
具体约束步骤如下:
步骤2,3,4同上
整数操作约束
?add:?约束公式:
具体约束步骤如下:
1.计算过程约束,代码如下:
Acala疑似遭黑客攻击,正通过一项紧急投票暂停操作:8月14日消息,社区有消息称,Acala因iBTC/aUSD池的漏洞遭到黑客攻击,攻击者钱包中目前持有超过12亿枚aUSD。
Acala随后发推称,注意到Honzon协议的一个配置问题影响到aUSD。团队正在通过一项紧急投票,暂停Acala上的操作,同时正调查并解决这个问题。团队将在网络恢复正常后更新报告。[2022/8/14 12:24:11]
2.解码结果约束和boolean约束
3.编码结果约束
?sub:?约束公式:sub约束比add稍微复杂一些,采用了一个中间变量表示a-b的结果,同时为了保证结果计算表示为正整数和符号的形式,给结果加上了2^w。具体约束步骤如下:
1.计算过程约束
2.解码结果约束和boolean约束
3.符号位约束
?mull?、umulh、smulh?约束公式:
mull相关的约束都涉及以下几个步骤
1.计算乘法约束
2.计算结果编码约束
3.计算结果flag约束
?udiv?、umod?约束公式:
B为除数,q商,r为余数。余数与需要满足不能超过除数的条件。具体约束代码如下:
M2E应用程序STEPN将LINE区块链用于日本市场:金色财经报道,移动技术公司 LINE 宣布,LINE Xenesis 和 Find Satoshi 最近达成了一项谅解备忘录,旨在利用 LINE 区块链为日本市场的 STEPN 本地化。STEPN 是一款“移动赚钱”的区块链游戏,让玩家可以赚取相当于他们所走步数的加密资产。两家公司将在为日本市场本地化 STEPN 的技术和业务方面进行合作,同时寻求创建一种服务,让日本用户轻松愉快地体验 web3 作为他们健康生活方式的一部分。(cryptoninjas)[2022/8/12 12:20:09]
shift操作约束
??shl、shr?约束公式
比较操作
比较操作中的指令每一个都不会修改任何寄存器;比较的结果存储在flag中。比较指令包含cmpe、?cmpa?、cmpae、cmpg、cmpge?。比较指令可以分为两类,分别为有符号数的比较和无符号数比较,两者约束过程核心都利用了libsnark中实现的comparison_gadget。
其他剩余过程跟有符号数比较约束相同
move操作约束
??mov?约束公式:
mov的约束比较简单,只需要确保将存储到ri寄存器中,由于mov操作没有修改flag,所以约束需要确保flag的值没有产生变化。约束代码如下:
??cmov?约束公式:
cmov的约束条件比mov复杂一些,主要mov的行为跟flag值的变化有关系,同时cmov不会修改flag,所以约束需要确保flag的值没有变化,cmov的代码如下:
Jump操作约束
这些jump和条件jump指令都不会修改寄存器和?flag?但是会修改?pc。
??jmp
Jmp操作约束pc值与指令执行结果一致,具体约束代码如下:
??cjmp
cjmp根据flag条件进行跳转,flag=1进行跳转,否则pc自增1
约束公式如下:
约束代码如下:
??cnjmp
cnjmp根据flag条件进行跳转,flag=0进行跳转,否则pc自增1
约束公式如下:
约束代码如下:
Memory操作约束
这些是简单的memoryload和store操作,其中memory的地址由立即数或寄存器的内容确定。这些是tinyram中唯一的寻址方式。。
??store.b?和?store.w
对于store.w取整个arg1val的值,对于store.b操作码只会取arg1val的必要部分,约束代码如下:
??load.b?和?load.w
这两个指令我们要求从内存中加载的内容被存储在instruction_results中,约束代码如下:
输入操作约束
??read
read操作跟tape有关,具体的约束规则是:
1.上一个tape中的内容被读完,没有内容可读,不会读取下一个tape。
2.上一个tape中的内容被读完,没有内容可读,flag被设置为1
3.如果当前执行的指令是read,那么read读取到的内容和tape输入内容一致
4.从tape1以外的地方读取内容,flag被设置为1
5.result为不为0,意味着flag为0
约束代码:
输出操作约束
该指令表示程序已经完成了计算,因此不能再允许其他操作
??answer
当程序的输出值被接受,has_accepted会被设置为1,程序返回值能够被正常接受意味着当前的指令为answner以及arg2value为0。
约束代码如下:
其他
当然除了上述提到的一些指令相关的约束外,tinyram还有一些pc一致性、参数编解码、内存检查等各种约束。这些约束通过R1CS系统组合起来构成一个完成的tinyram约束系统。所以这也是R1CS形式的tinyram生成约束数量较多的根本原因。
这里引用一个tinyram介绍ppt的图片,展示一个ERC20transfer用tinyram生成证明需要的时间消耗。
从上图的例子可以得出结论:使用vnTinyram+zk-SNARKs验证所有EVM操作是不可能的,只适合验证少量的指令的计算验证,可以使用vnTinyram验证EVM的部分计算类型的opcode。
参考
tinyram介绍ppt:
https://docs.google.com/presentation/d/1lbyLmXhCry61fxWm8LLxPKhCYV67RcZaK3WL20Hb-t8/edit#slide=id.g5b38da04a0_0_21
关于我们
Sin7y成立于2021年,由顶尖的区块链开发者和密码学工程师组成。我们既是项目孵化器也是区块链技术研究团队,探索EVM、Layer2、跨链、隐私计算、自主支付解决方案等最重要和最前沿的技术。
微信公众号:Sin7y
GitHub:Sin7y
Twitter:@Sin7y_Labs
Medium:Sin7y
Mirror:Sin7y
HackMD:Sin7y
HackerNoon:Sin7y
Email:contact@sin7y.org
来源:金色财经
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。