生成式AI在B2B场景应用的变化
过去几年大家见证了大语言模型逐步成为主流,并研究了这项技术在B2B领域的应用情况。尽管取得了巨大的技术进步,但我们认为,我们仍处于B2B用例的生成式AI应用的早期——第一波浪潮之中。随着各公司逐步开发自己的应用,并且开始寻求围绕产品建立护城河,我们预计很多业务中的目标和实现方法,将会迭代到“第二波浪潮“之中。
如何理解这里的“迭代”?
到目前为止,绝大多数生成式AI应用,都集中在信息divergence之上。也就是说,目前的应用,主要是根据一组指令,来创造新的内容。
而在第二波生成式AI浪潮之中,相信市场会见证更多用于信息汇集的生成式AI应用,这些应用会通过综合现有信息,向我们展示更精细化、筛选出来的内容为了和第一波生成式AI浪潮进行区分,我们把第二波生成式AI浪潮,称为合成人工智能。
虽然第一波生成式AI浪潮在应用层创造了一些价值,但第二波生成式AI浪潮将带来下一步功能变化。
Orbiter Finance宣布已支持Linea网络,前5枚ETH跨链免手续费:7月19日消息,Orbiter Finance宣布已支持Linea网络,用户可通过ETH主网、zkSync-Era、Starknet等多个网络向Linea跨链代币,前5枚ETH跨链免手续费,跨链时间仅需30秒。[2023/7/19 11:05:08]
那么,下一步,生成式人工智能在B2B的解决方案会是什么走向?
结论是:B2B解决方案之间的PK,将不会把重点放在令人眼花缭乱的AI技术能力,而更关注这些技术层面的能力,将如何帮助企业用户具备更有价值的企业工作流程。
第一波生成式AI浪潮:跨越从C端用户到企业的桥梁
为了分析第一波生成式AI浪潮,首先我们要对B2C和B2B应用进行区分。当我们作为消费者,应用生成式人工智能时,我们的目标是以玩耍、娱乐和分享为导向。在娱乐层面,质量和正确性并不是最重要的:而让人工智能模型生成艺术或音乐这类功能更为重要,因为我们可以在Discord频道中分享,当然也会很快就会忘记它。大家通常会有一种心理倾向,认为更多的内容=生产能力=好,所以,用户通常会被吸引到生成式的、自动创造的AI工具。
Cardano开发公司:ADA在任何情况下都不应被SEC归类为证券:6月9日消息,Cardano 开发公司 IOG 针对 SEC 将 ADA 归类为证券一事发布回应表示,该指控包含许多事实不准确之处,在任何情况下 ADA 都不应被 SEC 归类为证券,了解去中心化区块链的运作方式是制定负责任立法的基本组成部分,这些指控不会对 IOG 的运营产生影响。[2023/6/9 21:26:12]
举个例子:ChatGPT的兴起,就是很具备说服力的案例:因为用户真的容忍了这个聊天机器人很多质量上的缺陷,就是因为大家能用它,生成更丰富的内容,并且分享,令人印象深刻。
当涉及到B2B应用时,业务目标就不同了。这里的目标,主要是围绕时间和质量的成本效益评估。我们要么希望能够用同样的时间产生更高的质量,要么希望产生同样的质量,但是速度更快。
人们使用B2B应用主要是在工作场所,在这类的场景中,质量更重要。然而,今天人工智能生成的内容,主要是为重复性和低风险的工作提供的,这种业务层面上,要求通常不高。例如,生成式AI很可以为广告或产品描述撰写文案,许多这个领域的B2B应用,表现出明显的增长态势。
ETC近两日新增地址数激增92.72%:7月29日消息,Tokenview数据显示,近两日ETC新增地址数和活跃地址数连续上升,昨日新增地址数达20,189,近两日涨幅达92.72%;昨日ETC活跃地址数为40,046,近两日涨幅达50.78%。[2022/7/29 2:45:32]
但我们随后也发现,生成式人工智能在撰写意见或论据方面确实不可靠注意,当涉及到B2B生产环境中的创新和合作时,这一点更重要,大模型生成SEO信息也许是可用的。但是,如果让它为开发者撰写一篇详细新产品的博客文章,将会需要不小的人力去完善,以确保这篇文章是准确的,与目标受众产生共鸣。
另一个常见例子是AI用于编写销售的电子邮件,生成式AI对于普通的、冷冰冰的冷启动邮件是很有用的,但对于准确的个性化邮件来说就不太可靠了。从一个优秀销售的角度来看,生成式AI有助于在更短的时间内写出更多的电子邮件,但要写出能提高回复率,并带来订单的电子邮件,销售代表还是需要仔细研究,并通过自己判断,了解潜在客户想听什么。
GaryVaynerchuk宣布VaynerNFT更名为Vayner3:7月17日消息,NFT 项目VeeFriends创始人Gary Vaynerchuk宣布,他的公司 VaynerNFT 将正式更名为 Vayner3,其团队也将会把业务逐渐拓展到更广泛的 Web3 领域,而不是仅局限于 NFT。
VaynerNFT 成立于 2021 年 7 月,隶属于 VaynerX,在过去的一年里,他们推出了多个 NFT 项目,随着行业和机会的增长,这家由 GaryVee 领导的公司扩大了产品范围,以满足整个 Web3 行业不断增长的需求,在新品牌下,该公司将专注于指导世界领先企业和知识产权所有者进行下一次消费者行为迭代,目前其合作伙伴包括威、百事可乐、美国公开赛、Coinbase 等。
据 NFTGo.io 数据显示,截至目前 VeeFriends NFT 系列市值达到 1.9385 亿美元,地板价为 7.95 ETH。(NFTevening)[2022/7/17 2:18:30]
从本质上讲,在头脑风暴和早期,第一波生成式人工智能对于更实质性的写作是成功的,但最终,越是需要创造力和领域内人专业知识,就越需要人为完善。
BitDAO 从二级市场回购 BIT 的提案已通过,将于 6 月 1 日启动:5月6日消息,BitDAO 从二级市场回购 BIT 的提案已通过,将于 6 月 1 日启动。
此前报道,BitDAO 社区发布新提案,该提案提议将原本 Bybit 提供给 BitDAO 资金的一部分用于在二级市场回购 BIT 并捐献给 BitDAO 财库。回购金额最初将设置为每天 70 万美元(每月约 2100 万美元),该金额可通过 BitDAO 投票进行调整。该提案还表示,未来可能会启动 BitDAO 财库中的 BIT 的销毁。[2022/5/6 2:53:22]
重构工作流程,有何代价?有何好处?
即使在生成式AI对较长的博客文章有用的情况下,你的Prompt必须是精确的。也就是说作者必须已经对代表自己博客文章的实质概念,具备清晰认识。然后,为了得到良好的结果,作者必须对AI输出的结果进行审查,迭代Prompt,不行的话,还要重写整个章节。
这里有个例子是用ChatGPT来生成法律文件,需要熟悉法律prompt的人提供所有需要的条款,然后ChatGPT可以用这些条款来生成草案。注意,AI不能执行当事方之间的谈判过程,但一旦所有关键条款都确定下来,生成式AI就可以出品较长的法律类文件草稿。不过,这些工作仍需要职业律师对它进行审查,编辑输出,以使这项文件达到可以签署的出品样本。
这也是为什么这类成本+效益评估模式,会在B2B背景下打破。
知识工作者正在评估如何工作流程中增加一个额外的AI功能的步骤是否值得花时间?是否应该还是由我们自己做?
第二波生成式AI浪潮:
汇聚信息,从而改善决策
当我们进入第二波生成式AI浪潮的时候,焦点会从信息生成转向信息综合。注意,在知识工作中,决策能力具备巨大价值,而员工的报酬是根据不完善信息做出决定,而不一定是单纯执行或解释这些决定而产生的内容数量而决定的。在许多情况下,更长的时间并不意味着更好。
许多常识和公理都支持下列观点:
1.代码行数不是衡量工程生产力的好方法2.更长的产品内容,不一定就能起到更清楚的说明作用3.更长幻灯片,也不一定能提供更多见解
Hex公司创始人BarryMcCardel认为,人机可以共生,比如说LLM如何能够改善我们的工作方式?
"AI在这里是为了增强和改善人类的能力,而不是取代人类。
因为当涉及到理解世界和做出决策时,人类一定要参与其中。人工智能能做的是帮助人类将更多的脑电波,应用于有价值的、创造性的工作,这样我们不仅能在一天中花更多的时间来做重要的工作,而且还能解放自己,从事最有价值的工作。"
那么,AI如何改善人类的决策?法律专家需要专注于综合和分析,提高决策的质量和/或速度,明显的应用是,去总结人类自己永远无法直接消化的大量信息。
SynthAI在未来的真正价值是,帮助人类更快地做出更好的决定。
这里的设想几乎与ChatGPT的用户界面相反:与其根据简明的Prompt写出长篇大论的回复,如果我们能从海量数据中,逆向设计出总结的简明提示,会怎么样?
这将有机会,让我们重新思考用户体验,使其尽可能有效地传达大量的信息。例如,像Mem这样由AI技术驱动的知识库,保存着某个组织中的所有会议笔记,可以主动对相关的决策、项目或人发起建议,当组织中的角色开始一个新项目时,应该参考这些决策、项目或人,从而节省了他们浏览先前机构沉淀知识的数个小时的时间。
回到上面一个对外发送营销邮件的例子,一个潜在的表现是,AI可以识别目标客户,究竟在何时会处于最高水平的购买意图,并提醒相关销售代表。然后,人工智能模型将根据综合研究,建议在电子邮件中提一两个最重要的问题,以及与想要销售的目标客户最相关的产品功能。
这些输入,可以被输入到第一波生成式AI带来的解决方案中,但其价值来自于综合阶段,并为销售人员,节约了对单一潜在客户的研究时间。
确保这种综合信息质量足够高的根本转变是,从大规模的通用模型转向能够应用多种模型的架构,包括在特定领域和特定用途的数据集上训练的更精细模型。例如,某个构建客户支持应用的公司,会使用以支持为中心的模型,该模型可以访问公司的历史支持票据,但在其他情况下又会回到GPT。在建设专有微调模型和数据集壁垒,这些组件会成为公司速度和质量的护城河。
SynthAI的部署
当我们思考,第二波生成式AI浪潮可能是什么样的时候,我们相信从SynthAI中,受益最大的应用场景将是以下两种情况:
1.存在大量信息的场景,人类很难手动筛选所有的信息。2.高信噪比场景,主题或抽象出来的观点必须具备准确性
人工智能对工作流的改造,会带我们走向一个新的生产力时代。
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。