本系列内容包含:基本概念及原理、密码学、共识算法、钱包及节点原理、挖矿原理及实现。
挖矿
以比特币网络为例,比特币挖矿主要使用到的算法是SHA-256,其具体流程参见下图。
我们从上往下进行分析:
第一层是:nVersion;
第二层是:hashPrebBlock;
第三层是:hashMerkleRoot,
动态 | WISeKey推出区块链手机WISePhone:据coincryptorama消息,11月8日,网络安全和物联网公司WISeKey国际控股有限公司(“WISeKey”,SIX:WIHN)宣布推出安全区块链手机WISePhone,其所有组件均由WISeKey完全保护。[2018/11/8]
第四层是:nTime;
第五层是:nBits;
第六层是:nNonce;
第七层是:Hash。
里面的n代表连续0的个数,该值要小于当前区块难度目标值m,挖到块的条件是前n个比特位全部为0,n越大,难度越大。假设最低难度对应最大目标值为M,则区块难度为:M/m
看过前面课程的朋友应该会有印象,这些全部是区块头中的数据字段。
动态 | 蚂蚁区块链获“世界互联网领先科技成果”大奖:据巴比特消息,11月7日,在浙江乌镇举行的第五届世界互联网大会上,蚂蚁金服金融级区块链应用平台入选“2018年世界互联网领先科技成果”。[2018/11/7]
再来看左边,我们分析一下为什么其中有些是固定而有些是可变的。
1.版本号和前一个区块哈希是固定的,以比特币为例,假设当前比特币区块高度为N,如果某人想挖接下来N+1区块的话,那么这个时候版本号必须是固定的,前一个区块的哈希必须也是固定的。因为在不存在分叉的情况下,当前区块包含上一个区块的哈希值;
也就是N-1区块的哈希值加上N区块数据算出N区块哈希值,然后將N区块哈希值当成N+1区块的的前一区块哈希值。这里有点绕,希望大家多理解一下;
2.交易Merkle根是可变的,为什么说可变呢?因为在挖矿的时候,肯定会准备一个打包区块,打包区块形成的时候,矿工会根据自己的需求或根据利益算法,将交易打包进去,最后整理成一个Merkle根;
行情 | 区块链概念股普跌:今日区块链概念股普跌。人人跌8.8%,Marathon Patent下跌7.3%,Overstock跌超7%,兰亭集势跌6.8%,Riot Blockchain跌超6%,迅雷跌4.9%,Square跌超4%,七星云跌超4%。此前有报道称,高盛暂时放弃了比特币交易柜台计划,后比特币大幅下挫。[2018/9/6]
3.时间戳是可变的,挖矿有个时间范围,在这个时间范围内挖出的矿都为有效,所以在有效时间内的时间是可以任意调节的;
4.难度值在一定周期内是固定的,会随着周期的改变而变化;
5.Nonce是可变的,这里就不展开讲了,忘记的朋友可以翻阅前面的讲解。
在挖矿的时候,到Nonce的时候,由于时间戳和Merkle根都已经经过计算固定了,这时只需要改变Nonce就可以了。此时可以把这7个数据看成一个整体,前面6个数据是X,把X放在哈希函数里面,会出来一个值,比如说Y值。
中国人民大学李虹含:区块链代码审计成就完美合约:中国人民大学国际货币研究所研究员李虹含发博称,区块链代码审计可以让黑客无孔可入,区块链代码审计成就完美合约。他认为,区块链中的 “法律合同”是一项受解释和仲裁的约束,程序员很难去创造一个缜密的合约。在任意一个大的合约里,可能出现的文稿错误以及一些条款需要解释和仲裁。同时,软件工程师不是法律专家,反之亦然。起草一份好的合约需要各种各样的技能,不一定与编写的计算机程序兼容。因此,智能合约代码在一定程度上都可能存在安全隐患。传统的智能合约代码审计主要利用人工,依靠code reviewer阅读智能合约代码。人工代码审计最终还是依赖人的经验,代码审计效果不明显,针对目前ETH大量代币的智能合约,人工审计工作量大,难以高效的完成工作。智能化代码审计,利用计算机进行稳健性检验是当前代码审计最重要的方式,掌握该项技术标准的国内公司并不多。但,区块链代码审计的重要性不言而喻,区块链世界本身是相当安全的,但是由于人为撰写代码的问题,不可能完美,必须加强代码有效性的识别。[2018/4/27]
由于比特币网络里使用的哈希算法是SHA-256,当Y值出来之后,就会得到一个256个由0和1组成的字符串。这个字符串出来之后,它会和X里面的难度值比较大小。
任泽平:技术驱动型独角兽以区块链等高科技为主要推动力,具有自然垄断特征:恒大集团首席经济学家任泽平8日发布中国独角兽报告称,按创新形态来看,独角兽主要可以分为平台生态型和技术驱动型。其中,技术驱动型是以高科技为主要推动力,例如大数据、云计算、人工智能、区块链技术等,代表企业多为高新制造业。这些企业大多够持续创新且具有自然垄断特征,重点在于带来区别化。[2018/4/9]
每计算一次,也就是通过了一个Nonce,就会产生一个Y值,Y值会和难度值比较大小,如果Y值小于难度值,此时就找到了一个有效的Nonce,矿也就挖出来了。
生成地址
地址的生成中也用到了哈希算法。从下图可以看到从公钥到比特币地址生成的流程。
第一层:生成公钥;
第二层:两层哈希算法,SHA-265和RIPMD-160;
第三层:然后双层哈希计算,会产生公钥哈希;
第四层:Base58Check编码;
第五层:经过编码,得到一个编码串,这个编码串就是公钥哈希即比特币地址。
形成Merkletree和交易Hash
在默克树树结构和形成交易哈希里面也使用到了哈希算法。
上图的默克树中,最底层有4个叶子节点,最左边HA下面有个Hash,意思是:Tx表示交易,A表示交易编号。
假设现在使用的哈希算法是SHA-256,那么交易产生时,会对HA、HB分别进行哈希计算,会分别得到2个由256个0和1组成的字符串。同理,HC、HD也会得到相应的字符串,这样四个交易会形成总的默克尔根。
区块链
大家都知道在区块链中,每个区块都是一环套一环衔接上去的,就像一个链条一样。我们通过下面的图片,具体分析一下。
从图中可以看出链的顺序是从下往上增长的,最下面块的高度是277314,这个区块里面包含上一个区块的哈希值:0000…0bdf,这里的0000…0bdf是上一个区块区块头的哈希值。
同理,277315区块里面包含的上一区块头哈希值:0000…2249,也是区块277314的区块头哈希值,即:0000…2249。同理277316区块也是这样的情况,这也是我们第一节希望大家多理解的问题。
这样的情况就保证了任何人可以从某一个区块中,找到这个区块里面包含的上一区块的哈希值,也就是其父区块。
现在我们讨论的问题都是针对于区块链没有分叉的一个情况,到后面我们详细分析区块链分叉之后情况又是怎样的。
通过这三个区块我们能发现,从某种程度上来说区块链就是一个哈希链。最新产生的区块通过哈希值指向上一个区块,上一个区块在指向上上一个区块……一直指向创世区块。通过这个关系,这些区块形成了链条,也就是我们常说的区块链。
这是哈希算法在区块链中常用到的具体应用,大家可以预先想一下,为什么区块链中会使用哈希算法,而不是其他算法呢?后面的课程我们会给大家进行解答。
下节预告:什么是哈希
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。