写在前面
伴随着区块链的技术发展,零知识证明技术先后在隐私和Layer2扩容领域得到越来越多的应用,技术也在持续的迭代更新。从需要不同的TrustSetup的ZKP,到需要一次TrustSetup同时支持更新的ZKP,再到不需要TrustSetup的ZKP,ZKP算法逐渐走向去中心化,从依赖经典NP问题,到不依赖任何数学难题,ZKP算法逐渐走向抗量子化。
我们当然希望,一个不需要TrustSetup同时也不依赖任何数学难题、具有抗量子性的ZKP算法也具有较好的效率和较低的复杂度,它就是REDSHIFT。
REDSHIFT
《REDSHIFT:TransparentSNARKsfromListPolynomialCommitmentIOPs》,从名字可以可出,它是基于List多项式承诺且具有透明性的SNARK算法。算法本身和PLONK有大部分的相似之处,唯一不同的是多项式承诺的原语不同。下面先简单的通过一张表格来展示REDSHIFT和PLONK算法的异同之处,具体如下:
报告:下一次比特币牛市将需要美国监管的明确性和较低的通胀率:金色财经报道,加密分析公司Nansen研究的?一份报告显示,下一个加密货币牛市周期将需要美国监管的明确性和较低的通胀率。 BTC的浅度抛售和加密货币隐含波动率的持续下降告诉我们,许多监管和宏观坏消息已经被消化,经济衰退的情景正在被推迟,通货膨胀的顽固令人惊讶,这产生了非线性效应,即(亚洲以外的)货币政策在更长时间内保持更严格的限制,进而成为风险资产越来越大的逆风。[2023/6/21 21:50:59]
美联储6月维持利率不变的概率为75.9%:金色财经报道,CME美联储观察表示,美联储6月维持利率不变的概率为75.9%,加息25个基点的概率为24.1%;到7月维持利率在当前水平的概率为34.5%,累计加息25个基点的概率为52.4%,累计加息50个基点的概率为13.1%。[2023/6/6 21:17:59]
因此,只要对PLONK算法有深入了解的读者,相信再理解REDSHIFT算法,将是一件相对简单的事。ZKSwap团队在此之前已经对PLONK算法进行了深入的剖析,我们在文章《零知识证明算法之PLONK---电路》详细的分析了PLONK算法里,关于电路部分的详细设计,包括表格里的《Statement->Circuit->QAP》过程,并且还详细描述了PLONK算法里,关于“PermutationCheck”的原理及意义介绍,文章零知识证明算法之PLONK---协议对PLONK的协议细节进行了剖析,其中多项式承诺在里面发挥了重要的作用:保持确保算法的简洁性和隐私性。
美参议员:CFTC才是加密货币现货市场的正确监管机构:12月3日消息,美国参议员John Boozman表示,比特币虽然是一种加密货币,但在联邦法院和证券交易委员会(SEC)主席的眼中,它也是一种商品,这一点毫无争议。他强调,包括比特币在内的商品交易的交易所必须受到监管,商品期货交易委员会(CFTC)才是加密货币现货市场的正确监管机构。
今年8月,Boozman和几位参议员提出了《数字商品消费者保护法》(DCCPA),“赋予CFTC对数字商品现货市场的专属管辖权”。今年国会还提出了另外两项法案,致力于使CFTC成为加密行业的主要监管机构。(news.bitcoin)[2022/12/3 21:19:56]
我们知道,零知识证明算法的第一步,就是算术化,即把prover要证明的问题转化为多项式等式的形式。如若多项式等式成立,则代表着原问题关系成立,想要证明一个多项式等式关系是否成立比较简单,根据Schwartz–Zippel定理可推知,两个最高阶为n的多项式,其交点最多为n个。
因反对加密货币,欧洲央行行长的言论引发多方不满:5月26日消息,在荷兰的一个脱口秀节目中,欧洲央行行长Christine Lagarde表示,加密货币“一文不值”,因为没有基础资产提供支持。此外,Lagarde对那些投资于加密货币的人表示担忧,并呼吁进行监管。
对此,Crypto Council for Innovation的首席执行官Sheila Warren表示,她对Lagarde的言论感到失望,但并不惊讶。根据Warren的说法,“新的数字经济将在数字货币的组合上运行,包括加密货币、稳定币和CBDCs”。
与此同时,加密货币分析师Lark Davis引用Lagarde的话,Davis发推表示,他认为与其说是加密货币,不如说Lagarde是在“描述欧元”,因为它是“凭空印出来的”。
推特用户ByzGeneral分享了一段显示Lagarde承认她自己的儿子从事加密货币交易的视频,并称Lagarde是一只“恐龙”。ByzGeneral在推特上写道,这些“恐龙”没有意识到他们的时代已经结束了。(Cointelegraph)[2022/5/26 3:44:03]
换句话说,如果在一个很大的域内随机选取一个点,如果多项式的值相等,那说明两个多项式相同。因此,verifier只要随机选取一个点,prover提供多项式在这个点的取值,然后由verifier判断多项式等式是否成立即可,这种方式保证了隐私性。
然而,上述方式存在一定的疑问,“如何保证prover提供的确实是多项式在某一点的值,而不是自己为了能保证验证通过而特意选取的一个值,这个值并不是由多项式计算而来?”为了解决这一问题,在经典snark算法里,利用了KCA算法来保证,具体的原理可参见V神的zk-snarks系列。在PLONK算法里,引入了多项式承诺的概念,具体的原理可在“零知识证明算法之PLONK---协议”里提到。
简单来说,算法实现了就是在不暴露多项式的情况下,使得verifier相信多项式在某一点的取值的确是prover声称的值。两种算法都可以解决上述问题,但是通信复杂度上,多项式承诺要更小,因此也更简洁。
协议
下面将详细介绍REDSHIFT算法的协议部分,如前面所述,该算法与PLONK算法有很大的相似之处,因此本篇只针对不同的部分做详细介绍;相似的部分将会标注出来方便读者理解,具体如下图所示:
协议的1-6步骤在PLONK的算法设计里都有体现,这里着重分析一下后续的第7步骤。
在PLONK算法里,prover为了使verifier相信多项式等式关系的成立,由verifier随机选取了一个点,然后prover提供各种多项式的commitment,由于使用的Katecommitment算法需要一次TrustSetup并依赖于离散对数难题,因此作为PLONK算法里的子协议,PLONK算法自然也需要TrustSetup且依赖于离散对数难题。
在REDSHIFT协议里,多项式的commitment是基于默克尔树的。若prover想证明多项式在某一个或某些点的值,证明方只需要根据这些值插值出具体的多项式,然后和原始的多项式做商并且证明得到商也是个多项式即可。
当然为了保护隐私,需要对原始多项式做隐匿处理,类似于上图协议中的第一步。在实际设计中,为了方便FRI协议的运行,往往设计原始多项式的阶d=2^n+k(其中k=log(n))。
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。