前言
本系列的第二篇文章,以超市收据为例,描述了Arithmetization的具体过程。本文将以另外一个例子为基础,在回顾Arithmetization过程的同时,将内容引申到多项式的LDT过程。
新的实例
AliceClaim:“我有1000,000个数,他们都在范围内”。为了方便验证者Bob验证,Alice首先要对Claim进行Arithmetization转换。过程如下图1所示(图中:黑色箭头代表主流程,红色箭头代表附加说明信息,黄色圈对应下面详细说明的索引)
下面具体说明一下对应流程:
首先生成执行轨迹(EXCUTETRACE),事实上,它是一张表,总共有1000,000行;生成多项式约束(PolynomialConstrains),多项式约束满足执行轨迹的每一行(个人理解:步骤1,2没有一定的先后依赖关系,只是习惯上先生成执行轨迹,再生成约束多项式);对执行轨迹进行插值,得到一个度小于1000,000的多项式P(x)、x取值,并计算更多点上的值,x取值范围扩大到(Reed-Solomen系统编码);假如,证明者有一个值不在范围内(图中红线1/2所示),假如就是第1000,000个点,它实际的值是13,大于9,其插值后的曲线G(x)如图所示,图中P(x)为有效曲线,G(x)为无效曲线。可以看出,两条曲线在变量x取值范围内,最多有1000,000个交点,即有1000,000,000-1000,000个点不同,这很重要。将插值后的多项式P(x)和多项式约束进行组合变换,最终得到的形式为:
Fireblocks Web3负责人:传统金融公司正在深入研究加密货币:金色财经报道,Fireblocks的Web3负责人表示,传统金融公司正在进一步进入加密领域。Fireblocks代表1,500多家金融机构托管资金,并使它们能够与区块链和加密服务进行交互。
Amsel表示,这些公司,尤其是更传统的公司,从托管服务开始,然后慢慢转向更多的加密原生交互。Amsel说,“我们看到越来越多的传统金融正在探索进入加密货币的方式,也许他们正在采取一种更加胆小的方法”。
Amsel举了一个假设的例子,一家公司可能在一两年前开始使用加密货币托管。他说,这些公司迈出了第一步,看到没问题,然后开始更多地探索这项技术。[2022/11/6 12:21:55]
Q(P(x))=Ψ(x)*T(x),其中T(x)=(x-1)(x-2)……(x-1000,000),x取值
其中,d(Q(P(x)))=10,000,000、d(Ψ(x))=10,000,000-1000,000、d(T(x))=1000,000;
至此,问题就转化成了,Alice宣称“多项式等式在变量x取值范围内成立”的问题。那么验证者Bob该如何验证呢?具体过程如下:证明者Alice在本地计算多项式P(x)、Ψ(x)在所有点上的取值,对!从1至1000,000,000,并形成一个默克尔树;验证者Bob随机的从内选取一个值ρ,并发送给证明者Alice,要求其返回对应的信息;证明者Alice返回P(ρ)、Ψ(ρ)、root、AuthorizedPath(P(ρ)、Ψ(ρ))给验证者Bob;验证者Bob首先根据默克尔树验证路径验证值P(ρ)、Ψ(ρ)的有效性,然后等式Q(P(ρ))=Ψ(ρ)*T(ρ),如果成立,则验证通过;
中国证券报:随着区块链等金融科技应用深入 需加强个人金融信息保护:5月11日,中国证券报刊文称,相关金融基础设施亟待完善,随着大数据、区块链等金融科技应用不断深入,涉及个人金融信息保护的基础网络设施、IT架构、数据结构治理等亟待监管部门协调构建。[2020/5/11]
完整性分析:如果验证者Alice是诚实的,那么等式Q(P(x))一定会被目标多项式T(x)整除,因此必定存在一个d(Ψ(x))=d(Q(P(x)))-d(T(x))的多项式Ψ(x),满足Q(P(x))=Ψ(x)*T(x),因此对于任意的x,取值在之间,等式都会成立;
可靠性分析:如果验证者Alice是不诚实的,即类似于步骤3里的假设,在x=1000,000上,P(x)的取值为13,那么Q(P(1000,000))!=0,但是等式右边,T(1000,000)=0,因此Q(P(x))!=Ψ(x)*T(x),即等式两边是不相等的多项式,其交点最多有10,000,000个,因此通过一次随机选取,其验证通过的概率仅为10,000,000/1000,000,000=1/100=0.01,经过k次验证,其验证通过的概率仅是1-10(^-2k);
上述的验证过程为交互式的,如果是非交互式的,可以利用Fiat-Shamirheuristic进行变换,以默克尔树的根作为随机源,生成要查询的随机点;
LDT
我们忽略了一种攻击方式,即针对每一个数x,证明者都随机生成p,然后根据Ψ(x)=Q(p)/T(x),这些点不在任何一个度小于1000,000的多项式上,但是可以通过验证者验证。如下图2所示:
声音 | 原保监会副主席:区块链等技术通过保险业务流程全面深入,提升了保险行业的业务效率:金色财经报道,近日,全国政协经济委员会委员、国务院参事室特约研究员、原保监会副主席周延礼在“三亚财经国际论坛——全球格局变化下的应对与抉择”上表示,近年来,科技和互联网巨头跨入保险界,大数据与人工智能成为保险科技的主要驱动力,大数据、云计算、区块链、人工智能等技术通过保险业务流程全面地深入,提升了保险行业的业务效率,改变了产品形态与服务的交互方式,新的商业模式和保险生态随之而产生。[2019/12/11]
图中:紫色的点为随机生成的点p,这些点大概率不在一个度小于1000,000的多项式上(事实上,可以不考虑前1000,000个点,因为验证者只会从范围内取值)。因为即使选择1000,000个点插值出一个度小于1000,000的多项式,也不能保证其他的点在这个多项式上,因为其他的点是随机生成的。因此,需要有一种方式,保证证明者P(x)的度是小于1000,000,Ψ(x)的度小于10,000,000-1000,000。这就是LDT的目标,那LDT具体的过程是怎么样的呢?请继续往下看。
举个栗子,如果Alice想证明多项式f(x)的度是小于3的,即有可能是2次的或者是1次的。一般流程如下:
验证者Bob随机选取三个值a,b,c,发送给证明者Alice;证明者Alice返回f(a),f(b),f(c);验证者Bob插值出度小于3的多项式g(x),然后再随机选取一个点d,发送给证明者;证明者Alice返回f(d);验证者Bob比对f(d)和g(d)的值,如果相等,则证明成立。
回归到一般情况,其过程可以用下图3表示:
声音 | 法中委员会秘书长林碧溪:中法两国深入区块链及人工智能合作:据人民网消息,2018年第五届中法团队合作创新奖即将在巴黎揭幕,法中委员会秘书长林碧溪表示,今年提交的候选项目中,区块链、人工智能、数字化工具的项目明显增加,且涉及领域非常广泛,覆盖核电站老化预测的解决方案、区块链学历认证及智慧城市能源管理等领域。林碧溪指出,中法两国创新合作的多样性,体现在创新合作的跨领域特征中。当今世界技术革新非常迅速,从区块链、人工智能到数字应用,都需要中法合作团队及时掌握并适应形势,才能致力于开发未来的新技术。[2018/11/30]
可以看出,如果D很大,Alice和Bob交互的次数则为D+k次,复杂度很高;有没有一种办法,使得两者之间交互的次数小于D的情况下,使得验证者相信多项式的度是小于D的,直接返回小于D个点肯定是不行的,因为那不能唯一确定一个度小于D的多项式,因此需要证明者需要额外发送一些辅助信息。下面我们以P(x)为例,详细阐述这个过程(事实上,应该是证明P(x)和Ψ(x)的线性组合小于10,000,000-1000,000,本文重点是LDT,因此只以P(x)为例,这并不影响对LDT的理解)。
假如P(x)=x+x^999+x^1001+x^999999=x+x^999+x*x^1000+x^999*(x^1000)^999;此时,我们找到一个二维多项式G(x,y),取值范围分别是、,满足:G(x,y)=x+x^999+x*y+x^999*y^999可以发现,当y=x^1000时,满足:G(x,y)=G(x,x^1000)=x+x^999+x*x^1000+x999*(x^1000)^999=P(x)如果我们能证明G(x,y)相对的x,y的最高度都是小于1000,因为P(x)=G(x,x^1000)上,因此可以相信P(x)的度小于1000,000;如图4所示:
贵阳高新区党工委副书记黄昌祥:深入推进区块链等技术与实体经济深度融合:贵阳网6月4日报道, 日前,高新区党工委副书记、管委会主任黄昌祥率队对区内大数据创新平台进行调研。黄昌祥要求,大力实施“千企引进”“万企融合”“千企改造”等工程,推进“智力收割机”计划,深入推进物联网、人工智能、区块链以及大数据与实体经济深度融合,引领大数据技术创新、加快大数据产业聚集,构筑大数据产业生态体系,以大数据引领全区经济实现高质量发展。[2018/6/4]
验证者把所有的点都计算好,形成一颗默克尔树。验证者随机选择一行和一列,如图中红线1/2所示,对于每一列,它是由关于y的度小于1000的多项式生成,对于每一行,它是由关于x的度小于1000的多项式生成。验证者从行/列中随机选择1010个点,用来验证对应行/列上的点是否在度小于1000的多项式上,需要注意的是,因为P(x)的点都在上图的对角线上,因此我们要确保每一行/列对应的对角线上的点也在对应的度小于1000的多项式上,即1010个里面一定要包含对角线的点。
可靠性分析:如果原始多项式的度实际上是小于10^6+10999,即P(x)=x+x^999+x^1001+x^1010999,那么对应的G(x,y)为G(x,y)=x+x^999+x*y+x^999*y^1010,即,对于每一个x,G(x,y)是关于y的一元多项式函数,且度d<1010,因此下图中的每一列所有点都是在度d<1010的多项式上,而不在d<1000的多项式式上。所以如果证明者任然宣称多项式P(x)的度d<1000,000,则会验证失败,其他场景是同样的道理
那有没有可能恶意证明者仍以G(x,y)=x+x^999+x*y+x^999*y^999的形式去生成证据呢?这样会验证通过吗?
我们知道,我们在验证时着重强调了对角线上的那一点一定要在多项式上,我们知道,此时对角线对应的多项式形式是
P(x)=x+x^999+x1001+x^999999,而实际的P(x),我们在这里标记为P`(x),其形式是:
P`(x)=x+x^999+x^1001+x^1010999
因此,如果验证者恰好选择的点是两个多项式的交点,则会验证通过,事实上,两个多项式最多有1000,000左右个交点,但是由于随机选取的点不是证明者自己选取,是由默克尔树的根为种子随机生成,因此证明者没有机会作恶,去可以选取那些能通过验证的点。
由于总共由10^9个点,因此随机选取一个点,能验证成功的概率为10^6/10^9=10^(-3),如果选择k行,则成功的概率仅为10^(-3k)。
以上可以看出,验证者和证明者只需要交互1010*2*k个点,就可以完成验证,假如k=10,则1010*2*10=20100<<10^6。
虽然上述实现了在交互次数小于D的情况下,完整LDT验证,但是证明者的复杂度过于庞大,至少10^18的复杂度远远大于原始的计算,因此需要一些优化方案,降低复杂度。话不多说,直接引入有限域,毕竟在实际项目中,我们可不希望数值本身过于庞大。直接引用费马小定理的结论:在有限域p内,如果满足(p-1)能被k整除,则映射x=>x^k的像只有(p-1)/k+1个。下图5以p=17,映射x=>x^2为例:
图中,红色为x^2在有限域p内的象,总共由(p-1)/2+1=9个。同时我们可以发现,9^2和8^2的像一致,10^2和7^2的像一致,以此类推,16^2和1^2的像一致,记住这个现象,对下一张图的理解有帮助。
因此,在本例中,我们选择一个素数p=1000,005,001,其满足:
为素数p-1能被1000整除p要大于10^9
因此,在有限域p内,x=>x^1000的像在p内有(p-1)/1000=1000,005个,因此图4可以变成图6的形式:
可以看出,列坐标变成了10^6个元素,对角线变成了平行的线条,总共有1000个。还记得上面费马小定理结论的特殊现象吗?这就是对角线这种分布的原因,读者试着去理解(可能读者会觉得,对角线应该是锯齿形,不是这种平行的形式,也许你是对的,但是这并不影响验证流程)。此时证明者的复杂度已经从10^18减少到了10^15次方,证明和验证过程和步骤3描述的仍然一致。
还能不能继续优化呢?答案是肯定的。回想起前面所述的验证过程,对于每一行/列,验证者都要获取1000个点进行插值得出一个度小于1000的多项式,仔细观察图6,对于每一行,原始数据里不就是有1000个数么?那我们干脆选这些点插值出一个度小于1000的多项式,然后只需要随机让证明者再计算任何一列,并且证明沿着列上的点都在度小于1000的多项式上,并且列上的点也在对应的利用原始数据插值出的行多项式上。此时,证明者复杂度从10^15减少到了10^9次方。总结:个人理解,从步骤1到步骤5,其实是PCP到IOP的选择过程。PCP要求证明者生成全部的证据,然后验证者多次随机选取其中的某一部分进行验证,但是这样,证明者的复杂度仍然很高;IOP要求证明者不用生成全部的证据,根据多次的交互,每次生成只需生成部分证据,使得证明的复杂度和D呈近似线性关系;证明者复杂度已经降低到了与D呈拟线性关系,验证者的复杂度虽然是亚线性,交互次数已经低于D,但是能不能优化到更低呢?基于证明复杂度的最优设置,我们继续探索验证复杂度的优化之路,回顾P(x)=x+x^999+x^1001+x^999999=x+x*(x^2)^499+x*(x^2)^500+x*(x^2)*499999,令G(x,y)=x+x*y^499+x*y^500+x*y^499999,则当y=x^2时,有G(x,y)=G(x,x^2)=x+x*(x^2)^499+x*(x^2)^500+x*(x^2)*499999=P(x)。最终的图应如下图7所示:
从图中可知:
证明则复杂度仍为10^9次方;每一行上的点都在度d<2的多项式上,因为当y取固定值时,G(x,y)就是关于x的一次多项式;每一列上的点都在度d<D/2的多项式上,证明者需要证明这个多项式是小于D/2的,假定这个多项式为P1(x),这个时候,并非验证者选取大于D/2个点去验证,因为验证复杂度仍然不够低,而是对这一列再一次用到类似于P(x)的处理过程,如图7中下面的图所示,以此循环,直到可以直接判断列上的多项式的度为止,类似于行。
总结
至此,本篇文章就结束了,总结下来,本文主要阐述了以下几个内容:
如何转换问题形式--Arithmetization为何需要LDT--为了验证简洁LDT的大概过程--二分法验证,类似于FFT降低LDT的复杂度--有限域+IOP
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。