研究种类:AIGC, Web3
贡献者:Roy Dong/img/202352600203/0.jpg">
AIGC技术的快速发展始于GAN(生成对抗网络,2014)模型的发表。它由两个模型组成:生成模型和判别模型。生成器生成“假”数据并试图鉴别器;鉴别器验证生成的数据,并尝试正确识别所有“假”数据。在训练迭代的过程中,两个网络对抗中提升,直到达到平衡状态。
受到REvil攻击的Kaseya公司表示从“受信任的第三方”获得通用解密器:受到REvil攻击的Kaseya公司昨日宣布获得一个通用解密器,可用于消除7月2日勒索软件攻击的影响,努力修复受事件影响的客户。Kaseya发言人表示该工具来自“受信任的第三方”,但拒绝提供更多细节。Kaseya被怀疑支付了7000万美元的赎金,也有人认为美国对俄罗斯的施压正在发挥作用或者受影响的Kaseya客户可能已经介入。(decrypt)[2021/7/24 1:12:52]
在GAN发表后的两三年时间里,业内对GAN模型进行了各种改造和应用。2016年和2017年,在语音合成、情绪检测、换脸等领域产生了一大批实际应用。
谷歌在2017年开发的Transformer模型逐渐取代了Long and Short Term memory (LSTM)等传统RNN模型,成为NLP问题的首选模型。
作为Seq2seq模型,它提出了注意力机制,计算每个单词与其上下文的相关性,以确定哪些信息对手头的任务最重要。与其他模型相比,Transformer速度更快,并且可以更长时间地保留有效信息。
BERT(来自Transformer的双向编码器表示,2018)使用Transformer构建了一个用于自然语言处理的完整模型框架。它在处理一系列自然语言处理任务上超越了现有的模型。
维基解密收到一笔8.48BTC捐款:1月4日消息,据Whale Alert数据显示,维基解密刚刚宣布收到一笔8.48 BTC的捐款,价值约合281195美元(超过182万元人民币):交易哈希:80d33fc66e221cdbe67ac452b2bdb5df79b82988239a6c45284877a0cbd9590b,转入地址:Wikileaks Donation Wallet:36EEHh9ME3kU7AZ3rUxBCyKR5FhR3RbqVo。[2021/1/4 16:23:23]
从那时起,模型的大小不断增加,在最近两年出现了GPT-3、InstructGPT和ChatGPT等一批大模型,其成本也呈几何级数上升。
现今的语言模型有三个特点:大模型、大数据、大计算能力。在上方的图中可以看到模型参数的数量增加得有多快。有人甚至提出了语言模型的摩尔定律,——一年增长十倍。最新发布的ChatGPT模型有1750亿个参数,很难想象在这之后GPT-4中还有多少参数。
引入了HFRL(Human Feedback RL, 2022.03)技术,在训练数据集中增加了人的反馈,基于人的反馈进行优化,但由于需要大量的人的注释,成本进一步扩大。
第二点是模型在回答问题时会有自己的原则。之前的聊天机器人在与用户聊天时会将一些负面和敏感的内容一并学习,最后学会谩骂,发表歧视言论。与之前的模型不同,ChatGPT可以识别恶意消息,然后拒绝给出答案。
Emsisoft发布免费解密工具以恢复被Tycoon加密勒索软件攻击的文件:网络安全公司Emsisoft于6月4日发布了一款免费解密工具。该工具使受害者能够恢复被Tycoon勒索软件攻击加密的文件,而不需要支付赎金。黑莓安全部门的研究人员首先发现了这个勒索软件。他们表示,Tycoon使用Java文件格式,以便在部署加密文件的有效载荷前更难以被发现。
黑莓的研究人员指出,Tycoon勒索软件可以在Windows和Linux电脑上运行,使用的技术与要求比特币(Bitcoin)等加密货币支付的技术相同。最新调查结果显示,Tycoon感染的主要对象是教育机构和软件公司。黑莓公司的研究人员认为,实际感染人数“可能要高得多”。此外,他们警告说,更新版本Tycoon勒索软件已经提高了其攻击能力。以前,解密工具可以用来恢复多个受害者的文件,但现在不可能了。(Cointelegraph)[2020/6/6]
有记忆:ChatGPT支持连续对话,并能记住与用户之前对话的内容,因此经过多轮对话用户会发现它的答案在不断提升。
在参加2022年奇绩创坛秋季营的55家公司中,有19家AI主题公司、15家元宇宙主题公司和16家大型模型主题公司。与AIGC相关的项目有十余个,其中一半以上是与图像相关的。每个项目的详细信息附在下面的链接中:
Link:https://new.qq.com/rain/a/20221121A04ZNE00
当下AIGC最火的细分赛道当属图像领域,归功于Stable Diffusion的行业应用,图像AIGC在2022年迎来了爆发式的增长。具体地,图像AIGC赛道具有以下优势:
针对加密货币勒索的GandCrab病 360已集成解密工具:近期,GandCrab勒索病在国内流行度颇高,它会加密图片、文档、视频、压缩包等文件类型,在原文件名之后加上.GDCB后缀,再向受害者勒索价值约1200美元的达世币赎金。这也是首个使用达世币作为赎金的勒索病。360安全卫士“解密大师”根据国外流出的解密私钥,已第一时间集成解密工具,可破解目前主流的GandCrab病,帮助中招者一键扫描并解密恢复文件。[2018/3/7]
与自然语言处理中的大模型相比,CV领域的模型尺寸相对较小,与Web3的契合度也更高,可以与NFT、元宇宙紧密联系在一起。
与文字相比,人们对图片的阅读成本更低,一直是一种更直观和更容易被接受的表达形式。
图片的趣味性和多样性更高,且该部分技术目前趋于成熟,正在快速迭代。
2022年CVPR的论文《High-Resolution Image Synthesis with Latent Diffusion Models》
通过向图像中添加噪声,可以将一张图片变成随机的噪声图片,扩散模型与之相反,学习如何去除噪声。然后,该模型将这种去噪过程应用于随机的噪声图片,最终生成逼真的图像。
模型需要在效果和效率之间做权衡,在秒级别还是难以生成准确的,用户期待的定制效果。
这些公司的运营和维护成本很高,需要大量的图形显卡设备来带动他们的模型。
赛道中近期涌现大量初创公司,竞争激烈,但缺乏杀手级应用程序。
接下来再来讨论下3D-AIGC,这是一个潜力较大的赛道,目前模型尚不成熟,但未来会成为元宇宙中的刚需的基础设施。
类似于2D图像的生成,3D-AIGC项目能够生成三维物品,进而甚至自动地渲染与构建三维场景。当未来元宇宙得到普及之后,会对虚拟的三位资产有大量的需求。当用户处于三维场景中时,用户需要的不再是二维的图片,而是三维的物体和场景。
相比于生成二维图像,在三维上生成虚拟资产需要考虑更多的东西。一个三维的虚拟物体由两部分组成,一个是三维形状,另一个是物体表面的花纹和图案,我们称之为纹理。
因此一个模型需要选取三维虚拟资产可以分两步生成。在我们获得了一个3D对象的几何图形后,我们就可以通过纹理映射,环境贴图等多种方法来赋予它表面的纹理。
而在描述三维物体的几何形状时也需要考虑多种的表达方式有显式的表达形式,比如网格和点云;也有代数、NeRF(神经辐射场)等隐式的表达方式。具体需要选取适配模型的方式。
总之我们最终需要将所有的这些过程都集成到一起,组成一个文本到3D图像的流程管线,管线比较长,在当下也尚未有成熟的应用端模型出现。但扩散模型的流行会促使许多研究者进一步研究三维图像生成技术。目前这一方向的技术模型也在快速迭代。
相对于VR、XR等需要与人互动、对实时性有严格要求的技术。3D AIGC推的实时性要求更低低,应用门槛和速度会更快一些。
都说AIGC是web3.0时代的生产力工具,AIGC提供大量的生产力,而web3.0与区块链的应用则决定生产关系与用户主权。
但我们必须认识到AIGC和Web3是两个不同的方向。AIGC作为使用AI技术的生产工具,既可以应用于web2世界,也可以应用于Web3世界。到目前为止,大多数已经开发的项目仍然在Web2领域。把两者放在一起谈话是不合适的。而Web3希望借助区块链和智能合约技术,让用户拥有虚拟资产的主权。它与创建模式之间本没有直接联系。
一方面,它们都依靠程序来优化现有的生产和创作模型。AIGC用AI取代人类进行创造,Web3用智能合约、区块链等去中心化程序取代人工中心化机构。用机器代替人,不会有主观的误差和偏差,效率也会显著提高。
另一方面,Web3和元宇宙将对二维的图片和音频,三维的虚拟物体和场景有很大的需求,而AIGC是一个很好的满足方式。
但在web3.0的概念尚未普及到普罗大众的当下,我们能看到涌现出的项目几乎还是Web2的项目,在web3领域的应用目前大量地还是停留在图像生成的AIGC上,用于NFT的创作。
其实在应用端,AIGC和web3.0的联系不能仅仅依靠“生产力”和“生产关系”之间的联系,因为AIGC同样也能给web2项目带来生产力的提升,而web3项目的优势是不明显的。
所以,为了抓住AIGC发展的机遇,我认为当前web3项目需要在以下两个方面进行优化:
一是寻求AIGC加持下的Web3.0原生项目,即只在Web3端能够应用的项目。或者换句话说,去思考如何用AIGC解决Web3项目目前面临的困境,这样的解决方案也是Web3原生的。例如ReadOn用AIGC去生成文章quiz,开辟了Proof of Read的新模式,解决了ReadFi一直以来存在的刷币问题,为真正阅读的用户提供代币奖励。这很难做到,但web3需要这样的模式创新。
二是用AIGC优化现存Web3应用的效率和用户体验。目前AIGC的应用主要存在于图像和NFT上,但其实创作是一个很宽泛的概念,除图片外还有很多种其他的创作方式。上文提到的3D-AIGC是元宇宙中可供思考的应用渠道,quiz生成也是一个眼前一亮的idea。eduDAO和开发者平台可以思考用AIGC来赋能教育,用于出题或者修改模块化的代码、生成单测等等;GameFi可以思考是否能用AIGC来充当游戏里的NPC;甚至能否借助AIGC的coding能力生成智能合约。
金色财经
金色早8点
澎湃新闻
Odaily星球日报
Arcane Labs
深潮TechFlow
欧科云链
链得得
MarsBit
BTCStudy
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。