一文解读零知识证明最新进展:RedShift红移算法

写在前面

伴随着区块链的技术发展,零知识证明技术先后在隐私和Layer2扩容领域得到越来越多的应用,技术也在持续的迭代更新。从需要不同的TrustSetup的ZKP,到需要一次TrustSetup同时支持更新的ZKP,再到不需要TrustSetup的ZKP,ZKP算法逐渐走向去中心化,从依赖经典NP问题,到不依赖任何数学难题,ZKP算法逐渐走向抗量子化。

我们当然希望,一个不需要TrustSetup同时也不依赖任何数学难题、具有抗量子性的ZKP算法也具有较好的效率和较低的复杂度,它就是REDSHIFT。

过去一周Circle USDC流通量减少9亿美元:据官方数据,1月26日至2月2日期间,Circle共发行22亿美元USDC,赎回30亿美元USDC,流通量减少约9亿美元。

截至2月2日,USDC总流通量为424亿美元,储备量为425亿美元,其中现金93亿美元,短期美国国债332亿美元。[2023/2/5 11:48:01]

REDSHIFT

《REDSHIFT:TransparentSNARKsfromListPolynomialCommitmentIOPs》,从名字可以可出,它是基于List多项式承诺且具有透明性的SNARK算法。算法本身和PLONK有大部分的相似之处,唯一不同的是多项式承诺的原语不同。下面先简单的通过一张表格来展示REDSHIFT和PLONK算法的异同之处,具体如下:

PKT Pal推出WiFi硬件设备“Mini”,可通过WiFi网络连接赚取代币PKT:2月1日消息,网络初创公司PKT Pal推出WiFi硬件设备“Mini”,支持用户赚取代币PKT。用户使用Mini连接到互联网的每一分钟都可以挖掘并赚取PKT,这是 2019 年推出的比特币分叉。客户还可以通过与他人共享WiFi来赚取PKT,该设备最早将于4月交付给客户。

据悉,去年8月,PKT Pal完成500万美元融资,由Acuitas Group Holdings领投。[2023/2/1 11:41:38]

因此,只要对PLONK算法有深入了解的读者,相信再理解REDSHIFT算法,将是一件相对简单的事。ZKSwap团队在此之前已经对PLONK算法进行了深入的剖析,我们在文章《零知识证明算法之PLONK---电路》详细的分析了PLONK算法里,关于电路部分的详细设计,包括表格里的《Statement->Circuit->QAP》过程,并且还详细描述了PLONK算法里,关于“PermutationCheck”的原理及意义介绍,文章零知识证明算法之PLONK---协议对PLONK的协议细节进行了剖析,其中多项式承诺在里面发挥了重要的作用:保持确保算法的简洁性和隐私性。

以太坊12月链上NFT交易额约为5.4亿美元,创近5个月新高:金色财经报道,据最新NFT链上交易额数据显示,以太坊12月链上NFT交易额达到539,292,048.31美元,创近5个月新高。此外,以太坊12月链上NFT交易量触及1,379,617笔,平均单笔交易额约为390.90美元,链上独立买家186,684个,独立卖家201,711个。[2023/1/1 22:19:35]

我们知道,零知识证明算法的第一步,就是算术化,即把prover要证明的问题转化为多项式等式的形式。如若多项式等式成立,则代表着原问题关系成立,想要证明一个多项式等式关系是否成立比较简单,根据Schwartz–Zippel定理可推知,两个最高阶为n的多项式,其交点最多为n个。

Galxe推出Galxe Passport,作为用户在Web3中的通用身份:9月13日消息,Web3 基础设施服务商 Galxe(原 Project Galaxy)宣布推出 Galxe Passport,作为用户在 Web3 中的通用身份,且能够安全且匿名地存储身份信息。Galxe 表示,用户不仅能够将 Galxe Passport 用作跨不同应用的通用身份,还能在钱包中获得独一无二的 Galxe Passport Soubound 代币。[2022/9/14 13:27:51]

换句话说,如果在一个很大的域内随机选取一个点,如果多项式的值相等,那说明两个多项式相同。因此,verifier只要随机选取一个点,prover提供多项式在这个点的取值,然后由verifier判断多项式等式是否成立即可,这种方式保证了隐私性。

然而,上述方式存在一定的疑问,“如何保证prover提供的确实是多项式在某一点的值,而不是自己为了能保证验证通过而特意选取的一个值,这个值并不是由多项式计算而来?”为了解决这一问题,在经典snark算法里,利用了KCA算法来保证,具体的原理可参见V神的zk-snarks系列。在PLONK算法里,引入了多项式承诺的概念,具体的原理可在“零知识证明算法之PLONK---协议”里提到。

简单来说,算法实现了就是在不暴露多项式的情况下,使得verifier相信多项式在某一点的取值的确是prover声称的值。两种算法都可以解决上述问题,但是通信复杂度上,多项式承诺要更小,因此也更简洁。

协议

下面将详细介绍REDSHIFT算法的协议部分,如前面所述,该算法与PLONK算法有很大的相似之处,因此本篇只针对不同的部分做详细介绍;相似的部分将会标注出来方便读者理解,具体如下图所示:

协议的1-6步骤在PLONK的算法设计里都有体现,这里着重分析一下后续的第7步骤。

在PLONK算法里,prover为了使verifier相信多项式等式关系的成立,由verifier随机选取了一个点,然后prover提供各种多项式的commitment,由于使用的Katecommitment算法需要一次TrustSetup并依赖于离散对数难题,因此作为PLONK算法里的子协议,PLONK算法自然也需要TrustSetup且依赖于离散对数难题。

在REDSHIFT协议里,多项式的commitment是基于默克尔树的。若prover想证明多项式在某一个或某些点的值,证明方只需要根据这些值插值出具体的多项式,然后和原始的多项式做商并且证明得到商也是个多项式即可。

当然为了保护隐私,需要对原始多项式做隐匿处理,类似于上图协议中的第一步。在实际设计中,为了方便FRI协议的运行,往往设计原始多项式的阶d=2^nk(其中k=log(n))。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

银河链

UNIXINBICOIN新币全球指数合约交易平台领跑者

XINBICOIN新币是全球领先指数合约交易平台,致力于为用户提供安全、专业、便捷的数字货币指数合约交易服务。XINBICOIN新币切实从用户角度出发,凭借对区块链领域的深刻认知,以及数字合约独特的系统技术.

USDT关于LBank暂时下线TBCK/USDT交易公告

尊敬的LBank用户: 因TBCK项目整体升级,据TBCK官方要求,LBank已暂时下架TBCK/USDT交易对。对于没有主动撤销的挂单我们已统一撤销。同时,也已暂关闭充值和提现业务。重新上线时间及重启充值和提现时间以后续公告为准.

[0:78ms0-2:815ms