摘要:本文运用分位数回归等方法,构建了一种比特币量价指标,并简述了其应用场景。对于比特币市场更深入的认识,可为监管机构提供更多的参考。
人们分析比特币的成交量和价格变化的目的在于,期望以此来预测其未来的价格。尽管我们认为比特币下一刻的价格是很难预测的,但通过其量价关系,依然能够从中获得一些信息,对其某个特殊时刻的价格进行粗略的估计。
一、量价关系的一种特殊情况
在分析量价关系时,有一种特殊情况是——成交量很大,但价格却不怎么变化。对于一般的震荡行情而言,这种价格上的平衡提供了3条可能正确的信息:
1、多头和空头的主力存在分歧,认为此价格是当前的底部或顶部;
2、多头和空头的主力愿意为此价格而投入的资金量;
3、若要打破此平衡,多头或空头应投入相较于此的更多的资金。
二、指标原理
在出现了这种特殊情况后,多头和空头完成了第一轮博弈,“弹药”打光之后,接下来或许会开展下一轮的评估、试探和博弈,这一般需要花费时间,故两轮之间相隔一段时间的可能性较高。这就如同某地发生地震后,变形的岩石通过破裂将累积的弹性势能迅速地释放完毕,一般需要经历较长时间后才会发生程度相当的下次地震。
Will Clemente:BTC的波动性是一种机制,将供应转移到最强的人手中:金色财经报道,Reflexivity Research联合创始人Will Clemente在社交媒体发文称,每当有人说你买比特币很幸运,就给他们看这个图表。买入比特币并不容易。你必须有巨大的信念,才能在多次70%以上的跌幅中坚持下去。市场将考验每个人的信念,而BTC的波动性是一种机制,将供应转移到最强的人手中。[2023/2/20 12:16:38]
因此,比特币可能会短暂地在此价格附近进行幅度较小的波动,这便是下一刻的大致价格。不过,这种情况只表明了下一刻价格剧烈变化的可能性较小,但依然存在这种可能性,因此依此建立的量价指标主要是作为一种辅助指标,实际运行时要与其他指标一起运用。
需要注意的是,“成交量很大,但价格却不怎么变化”这种情况可能是在一根K柱上体现的,也可能是在连续的几根K柱上体现的——多头和空头经历了较长时间的博弈,使得价格大幅波动,但最后价格变化依然不大(这连续的几根K柱中的第1根的开盘价接近于最后1根的收盘价),在实现指标时应充分考虑这两种情况。
那么,多大的成交量和多小的价格变化才能纳入到指标的判断之中?在清淡或热络的行情里,这个标准应是不同的,应该考虑到近期的普遍成交量和价格变化情况,灵活地进行设置。我们使用分位数回归来达到此目的。
Block.one CEO:POW是一种公平的分配机制:Block.one CEO Brendan Blumer(BB)在推特表示,工作量证明(POW)不仅是一种共识机制,它是一种公平的分配机制。[2021/5/28 22:51:01]
三、分位数回归简介-
经典回归的主旨在于基于解释变量来估计因变量的均值。当回归假设成立时,这一方法是有效的;但当出现非标准情况时,它就会失效。有些数据无法满足两个关键的假设——正态性假设和方差齐性假设。这正是分位数回归可以处理的问题,因为它放松了这些假设。另外,分位数回归为研究者提供了一个(无法从经典回归中获得的)新视角,研究解释变量对因变量分布中位置、尺度和形状的效应。
分位数回归的思想起源于1760年,当时一个游历学者、克罗地亚基督徒鲁杰尔?约瑟普?博斯科维克(Rudjer Josip Boscovich)——他拥有许多头衔:物理学家、天文学家、外交官、哲学家、诗人和数学家——来到伦敦讲授他尚未成熟的中位数回归方法。
凯恩克和巴西特(1978)提出了比中位数回归模型更为一般化的模型——分位数回归模型(QRM)。
R3正在开发一种基于区块链的债券交易系统:R3首席执行官David Rutter表示正在开发一种基于区块链的债券交易系统,这种交易系统使用Corda网络。(cryptopotato)[2020/7/16]
四、一种比特币量价指标——利用分位数回归
1、构建“K柱汇总数据”
将几家主流现货交易所的每分钟K柱数据进行汇总(本文暂用的是Binance、Gemini、Huobi和OKEx)。其中,每根K柱的开盘价、收盘价、最高价和最低价是这些交易所相同时间的K柱对应值的平均值,每根K柱的成交量是这些交易所相同时间的K柱的成交量之和。这样,便构建出能够初步反映市场整体情况的K柱数据。
这里最多只使用最近的120根K柱数据。
2、排除成交量较小的K柱
声音 | 经济政策研究中心主席:Libra或未能成功推出,但已成功播下引入另一种全球数字货币的种子:经济政策研究中心(CEPR)主席Beatrice Weder di Mauro表示,虽然Libra可能未获得立法者的批准,但它已成功播下了引入另一种全球数字货币的种子。具有全球资产的国际货币体系比当前的体系具有主要优势,当前的体系目前由美元主导。像Libra这样的全球货币网络的想法“威胁”了各国央行,因为建立在全球网络基础上的数字资产将降低其自身的重要性和在市场上的地位。但在生态系统中出现类似项目的可能性仍然很高。(ambcrypto)[2019/10/26]
此量价指标的指标值来自于上述“K柱汇总数据”。由于我们考虑的是“成交量很大,但价格却不怎么变化”的情况,故在筛选指标值时,应排除成交量较小的K柱,只保留成交量较大的。
例如,当前每根K柱的成交量在20-1000个币之间,那么显然大部分的成交量为20-50个币的K柱是可以排除的,指标值不应由其产生。
3、构建“成交量-价格差”数据
为了运用分数位回归,我们需要在K柱汇总数据中构建“成交量-价格差”数据。
各K柱的成交量数据是按上文所述计算出来的,而价格差数据则为该K柱的收盘价减去开盘价的绝对值。
声音 | 加密货币研究员:致力于比特币是一种参与形式,比投票等公认模式更有效:加密货币研究员Nic Carter发推表示,我不主张放弃所有;我认为致力于比特币是一种参与的形式,这比公认的模式(投票、给国会写信等)更有效。[2019/9/30]
若“成交量很大,但价格却不怎么变化”的情况是在连续的几根K柱上出现的,则“价格差”为这连续的几根K柱中的第1根的开盘价与最后1根的收盘价之差的绝对值。
4、使用“成交量-价格差”数据,进行分位数回归
图1
对于分位数回归的结果,我们只选择时间最近的,它才可能对后续的行情产生影响。
上图展示了某次分位数回归的结果。为了方便观测,我们只绘制了第0.05分位数、第0.25分位数、第0.5分位数和第0.75分位数的回归线。
一般而言,成交量越大,价格波动越大的可能性更高,符合这种情况的点(数据)将更多地出现在图的右上方。而图右下方的点(如果有的话),其价格波动在整体数据中较小,成交量较大——分位数回归就起到了这样的筛选作用。
将第0.05分位数回归线下的具有大额成交量的数据用红色点表示,作为指标值。它的含义是,在最新的最多120根K柱中,有一个成交量足够大,而价格变动足够小的点(数据)。它是占数据总量的5%以下的数据中的一个。
上图所示的指标值实际上是根据北京时间2021.10.30的03:59-04:01的3根连续的K柱形成的。这3根K柱的总成交量为523.5个币,但只造成了约3.4美元的价格波动。这展示了多头和空头在此3分钟的博弈情况,这3分钟的开盘价为62392.47美元,收盘价为62389.04美元。此后,各K柱的成交量保持在低位,比特币的价格在62300-62500美元附近小幅波动。可形象地将此指标值的情况绘制如下:
图2
我们再举一例。下图所示的指标值是根据4根K柱形成的,这4根K柱的总成交量为1646.6个币,但只造成了约14.7美元的价格波动。此后各K柱的成交量保持在相对低位,在随后的12分钟里,价格在61000-61200美元附近小幅波动。而距离该指标值所示的大额成交越远处,价格大幅变动的可能性越大。
图3
五、此量价指标的运用
图4
上图所示的波动较为剧烈的行情发生在北京时间2021.11.4 2:00(UTC时间18:00),某交易所的比特币永续期货合约出现近2000美元的价格波动,当时4家交易所的现货成交总量约为2682.6个币。尽管这可理解为市场对美联储于该时间点公布11月货币政策委员会决议所带来的影响——美联储在维持政策利率不变的情况下,如市场预期般正式启动Taper的进程,将每月减少150亿美元的债券购买速度,但诸如此类的行情在没有相关新闻时也是不少见的。而在类似的行情中将难以在预期价格执行交易指令,不管是下单、建仓、平仓都存在不可控的巨大风险。因此,对于重要的策略,我们期望能在较平稳的行情中执行。
而本文所述的量价指标若存在指标值,则说明出现了“成交量很大,但价格却不怎么变化”的情况,表明多头和空头的主力很可能刚刚经过一轮博弈,市场围绕相应价格暂时达到供需平衡状态,这便提供了一个可以短暂和粗略地估计价格的阶段——接下来成交量下降、围绕对应价格的波动幅度小、行情平稳的概率较大。不过随着时间的推移,市场平衡的影响会逐渐减弱,因此指标所揭示的信息是有时效性的。
比特币的行情在大部分时候都是较为平稳的,而此量价指标若存在指标值,后续也有很大概率属于平稳行情。这样便存在多种好处。例如,在此类行情中进行上文所提到的下单、建仓、平仓的操作,能够避免价格剧烈变化所造成的风险。同时,平稳行情中,交易指令也能够顺利地被交易所执行,避免极端行情下交易所过载而无法执行指令的风险。另外,主力也可由此获知市场平衡的成交量量级,可尝试增加投入进行测试,从而打破当前平衡,令价格向某一方向发展。
六、小结
本文对“成交量很大,但价格却不怎么变化”的情况进行了讨论,运用分位数回归等方法,构建了一种比特币量价指标。当然,也有其他“智能化”的方案能够用于此指标的构建,但分位数回归易于理解,且计算快捷,具有明显优势。
需要再次强调的是,尽管有时此量价指标存在指标值,下一刻却仍然有价格剧烈变化的可能性,故在实际运行时应将它作为一种辅助,与其他指标一起运用。
参考文献
郝令昕,丹尼尔?Q.奈曼.分位数回归模型.肖东亮译. 上海:上海人民出版社, 2017. 1-40
朱雯. 基于分位数回归技术的证券市场风险溢出效应研究. 浙江工商大学硕士学位论文, 2018. 16
裴耀. 分位数回归及其应用. 华中师范大学硕士学位论文, 2014. 6-11
李常银. 不可忽略缺失数据下加权复合分位数回归模型的统计推断. 武汉大学硕士学位论文, 2019. 4
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。