大纲
本篇文章目的是通过具体示例,介绍完整的性能项目过程,具体内容介绍区块链性能测试中使用的:1.基本概念2.常用工具3.性能调优的常见情况这3块内容涵盖的内容非常多,每一个内容都有很多书籍和文章介绍,详细的内容不会出现在本文中。基本概念
区块链的性能测试,方法论上与传统的性能测试没有不同。性能测试有很多混乱的概念,这里我列出本文描述概念做一些定义。性能测试的定义
性能测试是对系统或者服务的性能指标建立监控策略,在特定场景下执行测试,分析判断性能瓶颈并调优,最终得出性能结果来评估系统或者服务的性能指标是否满足既定值。这里结合cosmos-sdk的simapp区块链来解释。1.需要明确指标,一般指两类指标:技术指标、业务指标。技术指标一般是TPS,响应时间,资源利用率,对应到区块链一般是指每秒可以处理多少笔交易?这些交易的响应时间或者统计结果是多少?在这种情况下系统使用的资源处于什么状态?期望满足的业务指标,应该来源于生产环境统计,以cosmos-sdk的生产应用cosmos-hub为例,其现阶段出块时间大约6秒,每个区块中的交易数大多数小于10。期望的业务指标设定为TPS为100是较为合理的。。2.测试模型:是真实场景的抽象,描述业务模型是什么样的。以cosmos-hub为例大致就是,分布在全球的区块链节点,在验证者节点约500个,活跃验证者节点约为200的情况下处理交易。测试时可以按比例抽象实际情况。3.测试方案:包括测试环境,测试数据,测试模型,性能指标等。对比区块链系统的测试,就是确定测试架构,准备好如1000个用户,每个用户余额1000stake这样的内容。4.需要有监控:监控的对象有压力机、区块链节点、其他如负载均衡服务器等。云原生时代的监控一般是Kubernetes+Prometheus+Grafana。5.需要测试条件:硬件环境,测试执行策略等。例如:4C8G,前60秒,每秒增加10个线程。6.需要有场景:指性能场景,正式化的描述是:在既定的环境、既定的数据、既定的执行策略、既定的监控之下,执行性能脚本,同时观察系统各层级的性能状态参数变化,并实时判断分析场景是否符合预期。性能场景,有时被称为测试用例其实是不对的。7.要有结果报告:报告内容当然就是实际的指标数据。性能场景分类
佳士得与法国著名古董商Benjamin Steinitz合作进行区块链拍卖:9月2日消息,英国拍卖行佳士得计划与区块链机构Artory合作,使用区块链技术对法国古董商Benjamin Steinitz的藏品进行拍卖,本次拍卖将于9月21日进行,58件拍品预计总成拍价350万英镑。
Steinitz认为区块链非常适合装饰艺术的发现和记录。他说:“在发现一件艺术作品产生最初的视觉和情感影响之后,通过其连续的所有权揭示它的历史同样重要,也是艺术作品本身的一个基本部分。”
据了解,四年前佳士得就成为全球首家应用区块链技术的拍卖行,当时艺术品的成交额超过3亿美元。(theartnewspaper)[2022/9/2 13:05:36]
1.基准性能场景:做单交易/接口的容量,为混合容量做准备。2.容量性能场景:混合容量测试是因为线上真实场景就是由不同的业务组成的,所以由这些业务按照不同并发比例发起梯度压测就是混合容量测试场景。3.稳定性性能场景:核心就是时长,在长时间的运行之下,观察系统的性能表现。这个时长的设置,应该来源于运维周期。4.异常性能场景:在强压力之下,模拟异常。重要的性能指标
性能测试的指标有很多,比如:1.RT,ResponseTime2.HPS,HitsPerSecond3.TPS,TransactionsPerSecond,这里的Transactions在传统的应用中一般称为”事务“,在区块链领域指”交易“4.QPS,QueriesPerSecond5.PV,PageView6.Throughput7.IOPS,Input/OutputOperationsPerSecond比较重要的指标有资源使用率、吞吐量、响应时间,服务提供方比较关心前两者,用户更更新后者。关于这些指标的一般情况引用PerformanceTestingMethodology(http://hosteddocs.ittoolbox.com/questnolg22106java.pdf)中的经典图来说明,实际情况可能不同。图中定义了3线3区域3状态,这个图值得多看看,能够大致理解指标简的关系。1.3线:Utilization,Throughput,ResponseTime2.3区域:LightLoad,HeavyLoad,BuckleZone3.3状态:ResourceSaturated,ThroughputFalling,EndUsersEffected
韩国首尔地方政府官员提议建立该国首个区块链投票平台:韩国首尔Seocho区领导人Cho Eun-hee提议为居民建立一个区块链投票平台,并赞扬了最近全国范围内涌入的加密相关发展。Cho Eun-hee认为,现在是开始使用区块链技术的正确时机,“这样任何公民都可以很容易地提出自己的意见”。如果成为现实,它将是该国第一个允许公民决定当地事务的区块链平台。(Cointelegraph)[2020/9/12]
其他
1.一般需要在什么时候做性能测试。a.项目上线前,估计系统承载能力b.项目重构后,评估效果2.如果一个项目得到性能报告就终止,这样就只是性能验证。做完全面的性能测试,同时将系统调优到最优状态,才算是一个完整的性能项目了。性能调优耗时长,还可能需要开发参与,代价高。区块链性能测试区块链的性能测试的指标最重要的是TPS与延迟,a16z的文章Whyblockchainperformanceishardtomeasure对此做了很有洞察的讨论,说明了为什么这两个指标很难测量和比较。其主要内容有以下方面:延迟
声音 | 杨望:区块链等技术有利于智慧养老服务的发展:据新浪专栏消息,中国人民大学金融科技研究所高级研究员、国际货币研究所研究员杨望发文指出,目前传统的养老模式正面临难以提供实时、高效、智能服务的瓶颈,养老服务更需科技助力,智慧养老已成为养老产业发展的主流趋势。国内智慧养老服务也在探索与发展中,互联网、物联网、人工智能以及区块链等技术都为养老服务发展提供助力。如河南驻马店正在开发的智慧养老平台中,将养老服务与区块链技术结合,实现了养老产业价值链整合。他还指出,区块链技术还有利于搭建以老年人需求服务为中心的积分管理中心,老人及家属以及养老服务提供方都可参与其中。[2019/8/16]
延迟的这段时间的起点和终点如何定义?1.起点是用户点击提交还是交易到达内存池?2.终点是交易被第1个区块确认?还是被第6个区块确认?又或者是最终用户收到接口响应的时间?3.有些区块链系统对交易会等待一定延迟和到达一定数量才开始处理。这样比较幸运的就是最后加入的交易,其处理延迟最短。4.对于上诉问题的一种折中方案是,即准确评估整个系统需要考虑延时的分布,而不是将其延迟看做单一数字。5.有些区块链系统的交易处理是有优先级的,fee高的交易很快确认,fee低的相对慢些。fee的不同对交易的延时和TPS的统计是有影响的。吞吐量
动态 | 浙江省人力资源厅将积极选拔培养区块链人才:根据浙江在线消息,日前浙江省人力资源和社会保障厅印发《关于做好2018年度浙江省151人才工程培养人员选拔工作的通知》。通知中指出,2018年度浙江省151人才工程将围绕数字经济“一号工程”建设要求,重点在大数据、新一代人工智能、区块链等数字经济重点领域开展选拔培养。[2018/8/23]
区块链中的吞吐量,即TPS(TransactionPerSecond)来衡量,这里的transaction显示不是平等的,最简单的例子就是以太坊中的交易,它可以是转账也可以是调用合约。因此,得出TPS需要指定T指代的是什么。另外一个实际的问题是,用户其实不关心一个区块链的TPS是多少,用户只关心如何少用fee并尽快完成交易。从这个角度来讲,TPS只对系统服务提供商有意义。基本工具
压力工具
压力工具一般用Jmeter或者特定应用专用测试工具如下:1.hyperbench/hyperbench2.hyperledger/caliper:Ablockchainbenchmarkframeworktomeasureperformanceofmultipleblockchainsolutions3.https://github.com/xuperchain/xbench4.…使用Jmeter应该是更贴近使用场景,更通用。一般与区块链节点进行交互的方式有1.gRPC协议2.HTTP协议(REST接口)Jmeter支持的Sampler支持有HTTP,对gRPC协议的支持需要借助插件jmeter-grpc-request监控工具
立陶宛成立欧洲首个区块链中心 希望吸引更多区块链初创企业进驻:立陶宛正在游说英国金融科技初创公司,希望他们能在自己的国家创建业务。其中有几家公司已经加入了欧盟市场,希望以此来防止英国英脱欧带来的不利影响。而立陶宛首都维尔纽斯已经启动了欧洲首个区块链中心,希望能为加密货币行业的初创企业们提供更多的机会,开发一个可信赖的网络,并服务于公共部门和私人。[2017/12/31]
监控工具一般用Prometheus这工具可以监控的内容比较多,其生态如图(https://prometheus.io/assets/architecture.png)。在测试区块链应用的实践中,一般是先使用docker-compose部署多个区块链节点模拟正式进行测试的环境,因为正式的测试环境一般硬件配置较高,如果不是自建机房,使用云服务厂商的机器,费用昂贵,这样做可以节约成本。docker-compose中可以限制容器使用的资源,如内存和CPU算力,甚至绑定CPU核心,对这些资源的监控可以使用cadvisor。为了验证CPU限制是否准确,可以用stress-ng压满核心,看统计结果是否与限制值一致。
性能调优
一般遇到性能瓶颈的常见元原因会是网络、CPU、磁盘IO。引发磁盘IO的瓶颈的操作有写日志频频繁,打印不必要的日志,通过网络访问磁盘等。这些资源都会通过系统调用来完成,跟踪系统调用,可以使用strace来查看执行了哪些系统调用,以及在这些调用上花费的时间等信息还可能遇到的问题是系统不稳定,可以表现为CPU使用率/TPS不稳定。如果在LightLoad区域选择一定的并发压力,TPS波动较大的话,可能就是系统设计得不好,需要找到原因和优化了。如果是CPU使用率不稳定,从CPU指令执行层面来看为CPU处于idle状态的时长参差不齐。这种情况下的原因并不在于有CPU有idle,而是在于处于idle的时间段有长有短。需要借助Linux系统工具、程序对应的profilling工具来观测,找到原因。分析工具
要解决性能问题,首先需要找到原因,寻找原因的分析工具可以参考下图(https://www.brendangregg.com/Perf/linux_perf_tools_full.png)。这是Linux性能分析最重要的参考资料了,显示了在不同子系统出现性能问题后,应该用什么样的工具来观测和分析。
磁盘IO
磁盘IO一般会导致系统瓶颈,磁盘IO栈比较长,分析起来难度不小。熟悉IO栈,有助于我们发现问题(https://www.thomas-krenn.com/en/wikiEN/images/c/c2/Linux-storage-stack-diagram_v6.2.pdf)
找到原因后,如果能够通过调整操作系统参数或者应用系统参数优化性能是比较快捷的,如果需要修改代码,则会涉及系统架构优化,会有涉及和编码工作,调优周期会很长。下一篇文章将分享使用cosmos-sdk中的SimApp来进行性能测试以及在性能调优方面的方法。
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。